本专业学生主要学习电子技术、测量与控制、通信系统理论和测控仪器的设计方法,受到现代测控技术和仪器应用的训练,具有测控技术和仪器的应用及设计开发能力。
本专业培养专业知识、实践能力、综合素质全面发展,掌握测量、控制和仪器领域的基础理论、专门知识和专业技能,掌握信息获取、传输、处理和应用的技术方法,具有测量控制领域技术集成和仪器综合设计应用能力的复合型工程科技人才,能在国民经济各部门从事测量控制与仪器领域的科学研究、设计制造、技术开发、应用研究、质量控制和生产管理等工作。
本专业学生主要学习测量理论、仪器设计与测控系统集成技术基础,学习测量、控制和仪器相关的光学、机械工程、电子与计算机科学、自动控制等理论与技术基础,通过多种教学环节和工程实践,接受现代测控技术等基础训练,具有测控系统和仪器设计、开发及集成应用能力。
1.掌握测量理论、测量控制技术、测控系统和仪器分析、设计与集成应用的基本理论和专业知识;
2.掌握分析和解决测量、控制和仪器领域实际问题的基本技能和方法,具有综合应用光学、机械、电子、计算机技术、控制等领域知识的能力;
3.具有批判性思维、创新意识和科学研究的基本能力;
4.熟悉国内外产品质量控制和安全生产的政策、法规,对目前围内外本专业常用的技术规范和标准有一定的了解,熟悉市场经济、企业管理等基本知识;
5.至少掌握一门外语,能熟练阅读本专业外文资料,具有国际视野和跨文化环境下的沟通与交流的初步能力;
6.具有良好的职业道德、敬业精神和社会责任感;
7.具有较扎实的自然科学基础,较好的人文素养,较强的语言文字表达、交流沟通和团队合作的能力;
8.具有终身学习意识和获取新知识的能力。
仪器科学与技术、控制科学与工程、光学工程、信息与通信工程。
示例一:电路基础(64学时)、计算机结构与逻辑设计(64学时)、电子电路基础(64学时)、信号与系统(48学时)、自动控制原理(52学时)、微机系统与接口(48学时)、工程力学(54学时)、工程光学(56学时)、信息通信网络概论(56学时)、仪器科学与技术概论(16学时)、传感器技术(56学时)精密机械设计基础(64学时)智能仪器设计技术(56学时)测试信号分析与处理(48学时)、误差理论与数据处理(34学时)、现代控制理论(34学时)、导航定位控制与应用(32学时),学科及专业选修课不少于12学分。
示例二:电路分析基础(68学时)、信号与系统(68学时)、电路信号与系统实验(15学时)、模拟电子技术基础(60学时)、数字电路与逻辑设计(46学时)、C语言程序设计(45学时)、微机原理与系统设计(78学时)、电子线路实验(Ⅰ、Ⅱ、Ⅲ学时)(23学时)、数字信号处理(46学时)、电磁场与电磁波(46学时)、射频模拟电路(46学时)、自动控制理论基础(46学时)、传感器与信号调理(60学时)、电子测量技术(54学时)、单片机原理与程序设计(54学时)、自动测试技术(54学时)、软件技术基础(54学时)、测量控制与仪器仪表新技术讲座(16学时),学科及专业选修课不少于22学分。
示例三:工程力学(51学时)、工程图学(80学时)、机械设计基础(85学时)、电路与电子技术(128学时)、自动控制原理(40学时)、微机原理及其应用(56学时)、传感器技术(48学时)、误差理论与数据处理(32学时)、工程流体力学(40学时)、热工基础(48学时)、仪表电路设计(40学时)、应用光学(40学时)、物理光学(48学时)、测控电路(40学时)、热工过程控制系统(40学时)、自劫检测技术(80学时)、精密仪器设计(40学时)、精密测量技术(80学时),学科及专业选修课不少于20.5学分。
金工实习、电子实习、生产企业实习、课程实验、课程设计、创新实践、工程设计、毕业设计(论文)、社会实践调查等;传感器技术实验、测试理论与检测技术实验、仪器设计实验、测量系统建模与数据处理实验、智能化仪器与网络化仪器实验、测控系统综合设计实验、仪器性能测试与评价等。
工学学士。
计算机应用、电子信息、智能仪器、虚拟仪器、测量与控制、通信、自动化等多领域的产品设计制造、科技开发、应用研究、教学管理、企业管理等工作;检测技术与自动化装置领域的理论研究与技术开发,自动化精密科学仪器、自动化监测、控制或生产系统的设计开发、运行管理。
本专业学生毕业后,可在信息产业领域及其他相关领域内从事与测量和控制技术相关的设计制造、科研开发、应用研究和运行管理等方面的工作。
测控技术与仪器